JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 3, August 2012

COMPUTATIONS OF BASES FOR THE SPACES OF CUSPFORMS OF WEIGHT 2

DAEYEOL JEON*

ABSTRACT. In this paper, we present a explicit procedure to compute a basis for the spaces of cuspforms of weight 2 on $X_0(N)$ which consists of eigenforms for the Atkin-Lehner involutions.

1. Introduction

For any positive integer N, let $\Gamma_0(N)$ be a congruence subgroup of $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z})$ consisting of the matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ congruent modulo N to $\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$. We let $X_0(N)$ be the modular curve associated to $\Gamma_0(N)$.

For each divisor d|N with (d, N/d) = 1 (we write d||N), consider the matrices of the form $\begin{pmatrix} dx & y \\ Nz & dw \end{pmatrix}$ with $x, y, z, w \in \mathbb{Z}$ and determinant d. Then these matrices define a unique involution on $X_0(N)$ which is called the *Atkin-Lehner involution* and denoted by $W_d = W_d^{(N)}$. In particular, if d = N, then W_N is called the *full Atkin-Lehner involution*.

It is known that the group $\operatorname{Aut}_{\mathbb{Q}}(X_0(N))$ of automorphisms of $X_0(N)$ over \mathbb{Q} contains the group $\mathcal{W} = \{W_d\}_{d||N}$ of Atkin-Lehner involutions. Let \mathcal{W}' be a subgroup of \mathcal{W} , and consider the quotient curve $X_0(N)/\mathcal{W}'$, which is denoted by $X_0^{+d}(N)$ (resp. $X_0^*(N)$) when $\mathcal{W}' = \langle W_d \rangle$ (resp. $\mathcal{W}' = \mathcal{W}$). For the case $\langle W_N \rangle$, this curve is denoted by $X_0^+(N)$.

It is a well known fact that there exists a basis of the spaces of cuspforms of weight 2 on $X_0(N)$ which consist of eigenforms for W_d . Such a basis gives bases for the spaces of cuspforms of weight 2 on the quotient spaces $X_0(N)/\mathcal{W}'$ from which one can obtain canonical embeddings of that spaces. In fact, eigenforms on $X_0(N)$ for W_d with eigenvalue +1 for all $W_d \in \mathcal{W}'$ are cuspforms $X_0(N)/\mathcal{W}'$. One can easily

Received April 13, 2012; Accepted June 20, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 11G18, 11G30.

Key words and phrases: cuspform, newform, oldform, eigenform.

^{*}This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2010-0023942).

Daeyeol Jeon

get linearly independent eigenforms from newforms in Stein's tables [3], but it is complicated to compute linearly independent eigenforms from oldforms. Many literatures use a basis for the spaces of cuspforms of weight 2 on $X_0(N)$ which consists of eigenforms for W_d without sufficient explanations how to find them.

In this paper, we will give full details of a method dealing with especially eigenforms form oldforms by an example.

2. Preliminary

The paper of Atkin and Lehner[1] gives some information about the behaviour of the newforms. We quote what we need from their main theorem.

THEOREM 2.1. The vector space, of cuspforms of even weight 2 on $\Gamma_0(N)$, has a basis consisting of oldcalsses and newclasses. All forms in a class have the same eigenvalues with respect to the Hecke operators $T_p \ (p \nmid N)$. Each newclass consists of a single form f which is also an eigenform for the $W_l \ (l|N)$. We choose f to be normalized (i.e. $a_1 = 1$ in the q-expansion). Then f satisfies

$$f|T_p = a_p f, f|W_l = \lambda_l f$$

where, if l||N we have $a_l = -\lambda_l$, and if $l^2|N$ then $a_l = 0$. Further, each oldclass is of the forms $\{g(d\tau) | g \text{ is a newform of some level } M$, and d runs through all divisors of N/M. The old classes may be given a different basis consisting of forms which are eigenforms for all the W_l .

Let $S_2(N)$ and $S_2^{\circ}(N)$ be the space of cuspforms of weight 2 on $\Gamma_0(N)$ and the space spanned by newforms of weight 2 on $\Gamma_0(N)$ respectively. For the behaviour of the oldforms, we need the following Theorem:

THEOREM 2.2. Let N be a positive integer. Let N' be a positive divisor of N and let d be a positive divisor of N/N'. For a prime p|N, let $p^{\alpha}||N, p^{\alpha-\beta}||N', p^{\gamma}||d$, so that $\gamma \leq \beta \leq \alpha$. Then the following holds: (1) If $f \in S_2(N')$, then

$$f(d\tau)|W_{p^{\alpha}}^{(N)} = p^{\beta-2\gamma} \left(f|W_{p^{\alpha-\beta}}^{(N')}\right)(d'\tau)$$

where $d' = p^{\beta - 2\gamma} d$.

(2) Let $f \in S_2^{\circ}(N')$. If $f|W_{p^{\alpha-\beta}}^{(N')} = \lambda_p f$ and $\beta \neq 2\gamma$ (resp. $\beta = 2\gamma$), then

$$f(d\tau) \pm p^{\beta-2\gamma}\lambda_p f(d'\tau) \ (resp.\ f(d\tau))$$

is an eigenform for
$$W_{p^{\alpha}}^{(N)}$$
 with eigenvalue ± 1 (resp. λ_p).
Proof. See [1].

Note that if $\alpha = \beta$ then we consider $W_{p^{\alpha-\beta}}^{(N')}$ an identity, and hence λ_p is regarded as 1.

3. Examples

In this section, we explain how to find a basis of the spaces of cuspforms of weight 2 on $X_0(N)$ which consist of eigenforms for W_d by an example. In the Modular Forms Database of Stein [3], there are two tables as follows:

- q-expansions of eigenforms on $\Gamma_0(N)$ of weight $k \leq 14$
- Eigenvalues of modular forms on $\Gamma_0(N)$ of weight ≤ 4 and high level, and of weight ≤ 100 and low level

For simplicity, we call the first table Table 1 and the second Table 2. Table 1 is a table of q-expansions of normalized newforms of even weight on $\Gamma_0(N)$, and Table 2 is a table of eigenvalues of newforms on $\Gamma_0(N)$ with the first few Hecke eigenvalues a_p of a basis of representatives for the Galois conjugacy classes of newforms.

Suppose $N = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ is the standard form of prime factorization of N. Then the third column of Table 5 in [2] lists the splitting of the space of all differential forms, old and new, given by the involutions $W_i =$ W_{p^i} (i = 1, ..., r). The dimensions of the eigenspaces corresponding to the *r*-tuple of eigenvalues $(\epsilon_1, ..., \epsilon_r)$ of $W_1, ..., W_r$ are listed in the order

$$\epsilon_1 = +1, \epsilon_1 = -1, \text{ if } r = 1;$$

 $(\epsilon_1, \epsilon_2) = (+1, +1), (+1, -1), (-1, +1), (-1, -1), \text{ if } r = 2.$

Now consider $N = 108 = 2^2 \cdot 3^3$. The genus of $X_0(108)$ is equal to 10 and the dimensions of the eigenspaces corresponding to (+1, +1), (+1, -1), (-1, +1) and (-1, -1) of W_4 and W_{27} are 1,3,3 and 3 respectively. Now we compute a basis of the space of cuspforms of weight 2 on $X_0(108)$ which consist of eigenforms for W_4 and W_{27} . Table 1 shows that $S_2^{\circ}(108)$ is an 1 dimensional eigenspace corresponding to (-1, +1)of W_4 and W_{27} , which gives one eigenform as follows:

$$f_1 = q + 5q^7 - 7q^{13} - q^{19} - 5q^{25} - 4q^{31} + \cdots$$

Daeyeol Jeon

Thus all the other linearly independent eigenforms should be obtained from oldforms. From Table 1 and Table 2, among $\Gamma_0(N')$ with N'|108 we have linearly independent four newforms as follows: Two newforms g_1 and g_2 on $\Gamma_0(54)$ are eigenforms corresponding to (+1, -1) and (-1, +1)respectively of $W_2^{(54)}$ and $W_{27}^{(54)}$, one newform g_3 on $\Gamma_0(27)$ is an eigenform corresponding to -1 of $W_{27}^{(27)}$, and one newform g_4 on $\Gamma_0(36)$ is an eigenform corresponding to (-1, +1) of $W_4^{(36)}$ and $W_9^{(36)}$. Their qexpansions are as follows:

$$g_{1} = q - q^{2} + q^{4} + 3q^{5} - q^{7} - q^{8} - 3q^{10} + \cdots,$$

$$g_{2} = q + q^{2} + q^{4} - 3q^{5} - q^{7} + q^{8} - 3q^{10} + \cdots,$$

$$g_{3} = q - 2q^{4} - q^{7} + 5q^{13} + 4q^{16} - 7q^{19} + \cdots,$$

$$g_{4} = q - 4q^{7} + 2q^{13} + 8q^{19} - 5q^{25} - 4q^{31} + \cdots.$$

Firstly we will find two more linearly independent eigenforms corresponding to (-1, +1) apart from f_1 by using Theorem 2.2. Consider g_2 and take d = 2, then $\alpha = 2, \beta = \gamma = 1$ and d' = 1. Thus

$$f_2 = g_2(2\tau) + \frac{g_2(\tau)}{2} = \frac{1}{2}q + \frac{3}{2}q^2 + \frac{3}{2}q^4 - \frac{3}{2}q^5 - \frac{1}{2}q^7 + \frac{3}{2}q^8 + \cdots$$

is an eigenform corresponding to (-1, +1). Consider g_4 and take d = 3, then $\alpha = 3, \beta = \gamma = 1$ and d' = 1. Thus

$$f_3 = g_4(3\tau) + \frac{g_4(\tau)}{3} = \frac{1}{3}q + q^3 - \frac{4}{3}q^7 + \frac{2}{3}q^{13} + \frac{8}{3}q^{19} - 4q^{21} + \cdots$$

is an eigenform corresponding to (-1, +1).

Secondly we will find three linearly independent eigenform corresponding to (+1, -1). The first one can be obtained from g_1 . We take d = 2, then $\alpha = 2, \beta = \gamma = 1$ and d' = 1. Thus

$$f_4 = g_1(2\tau) + \frac{g_1(\tau)}{2} = \frac{1}{2}q + \frac{1}{2}q^2 - \frac{1}{2}q^4 + \frac{3}{2}q^5 - \frac{1}{2}q^7 + \frac{1}{2}q^8 + \cdots$$

is an eigenform corresponding to (+1, -1). The second and third one can be obtained from g_3 . Consider the cases d = 2 and d = 4. If d = 2, then $\alpha = \beta = 2, \gamma = 1$, and hence

$$f_5 = g_3(2\tau) = q^2 - 2q^8 - q^{14} + 5q^{26} + 4q^{32} - 7q^{38} + \cdots$$

is an eigenform corresponding to (+1, -1). If d = 4, then $\alpha = \beta = 2, \gamma = 2$, and hence

$$f_6 = g_3(4\tau) + \frac{g_3(\tau)}{4} = \frac{1}{4}q + \frac{1}{2}q^4 - \frac{1}{4}q^7 + \frac{5}{4}q^{13} - 2q^{16} + \cdots$$

is an eigenform corresponding to (+1, -1).

Thirdly we will find three linearly independent eigenform corresponding to (-1, -1). The first one can be obtained from g_1 . We take d = 2, then $\alpha = 2, \beta = \gamma = 1$ and d' = 1. Thus

$$f_7 = g_1(2\tau) - \frac{g_1(\tau)}{2} = -\frac{1}{2}q + \frac{3}{2}q^2 - \frac{3}{2}q^4 - \frac{3}{2}q^5 + \frac{1}{2}q^7 + \frac{3}{2}q^8 + \cdots$$

is an eigenform corresponding to (-1, -1). The second one can be obtained from g_3 . We take d = 4, then $\alpha = \beta = 2, \gamma = 2$, and hence

$$f_8 = g_3(4\tau) - \frac{g_3(\tau)}{4} = -\frac{1}{4}q + \frac{3}{2}q^4 + \frac{1}{4}q^7 - \frac{5}{4}q^{13} - 2q^{16} + \cdots$$

is an eigenform corresponding to (-1, -1). The third one can be obtained from g_4 . We take d = 3, then $\alpha = 3, \beta = \gamma = 1$ and d' = 1. Thus

$$f_9 = g_4(3\tau) - \frac{g_4(\tau)}{3} = -\frac{1}{3}q + q^3 + \frac{4}{3}q^7 - \frac{2}{3}q^{13} - \frac{8}{3}q^{19} - 4q^{21} + \cdots$$

is an eigenform corresponding to (-1, -1).

Lastly we will find an eigenform corresponding to (+1, +1) which can be obtained from g_2 . We take d = 2, then $\alpha = 2, \beta = \gamma = 1$ and d' = 1. Thus

$$f_{10} = g_2(2\tau) - \frac{g_2(\tau)}{2} = -\frac{1}{2}q + \frac{1}{2}q^2 + \frac{1}{2}q^4 + \frac{3}{2}q^5 + \frac{1}{2}q^7 + \frac{1}{2}q^8 + \cdots$$

is an eigenform corresponding to (+1, +1).

Finally therefore we obtain a basis $\{f_1, f_2, \ldots, f_{10}\}$ of the spaces of cuspforms of weight 2 on $X_0(108)$ which consist of eigenforms for W_4 and W_{27} .

From this basis $\{f_1, f_2, \dots, f_{10}\}$ we can get bases for the spaces of cuspforms of weight 2 on $X_0(N)/\mathcal{W}'$ for various \mathcal{W}' . If $\mathcal{W}' = \langle W_4 \rangle$, then the genus of $X_0^{+4}(108)$ is equal to 4, which is the same as the number of eigenforms f_i corresponding to (+1, +1) and (+1, -1). Thus $\{f_4, f_5, f_6, f_{10}\}$ forms a basis for the space of cuspforms of weight 2 on $X_0^{+4}(108)$.

If $\mathcal{W}' = \langle W_{27} \rangle$, then the genus of $X_0^{+27}(108)$ is equal to 4, which is the same as the number of eigenforms f_i corresponding to (+1, +1) and (-1, +1). Thus $\{f_1, f_2, f_3, f_{10}\}$ forms a basis for the space of cuspforms of weight 2 on $X_0^{+27}(108)$.

If $\mathcal{W}' = \langle W_{108} \rangle$, then the genus of $X_0^+(108)$ is equal to 4, which is the same as the number of eigenforms f_i corresponding to (+1, +1) and (-1, -1). Thus $\{f_7, f_8, f_9, f_{10}\}$ forms a basis for the space of cuspforms of weight 2 on $X_0^+(108)$.

Daeyeol Jeon

Finally if \mathcal{W}' is equal to the full group \mathcal{W} , then the genus of $X_0^*(108)$ is equal to 1, which is the same as the number of eigenforms f_i corresponding to (+1, +1). Thus $\{f_{10}\}$ forms a basis for the space of cuspforms of weight 2 on $X_0^*(108)$.

References

- [1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134-160.
- [2] B. J. Birch and W. Kuyk (Eds.), Modular functions of one variable, IV, Lecture Notes in Math. 476, Springer-Verlag, Berlin, 1975.
- [3] http://modular.math.washington.edu/Tables/tables.html

*

Department of Mathematics Education Kongju National University Kongju 314-701, Republic of Korea *E-mail*: dyjeon@kongju.ac.kr