COMPUTATIONS OF BASES FOR THE SPACES OF CUSPFORMS OF WEIGHT 2

DaEyeol Jeon*

Abstract

In this paper, we present a explicit procedure to compute a basis for the spaces of cuspforms of weight 2 on $X_{0}(N)$ which consists of eigenforms for the Atkin-Lehner involutions.

1. Introduction

For any positive integer N, let $\Gamma_{0}(N)$ be a congruence subgroup of $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$ consisting of the matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ congruent modulo N to $\binom{* *}{0}$. We let $X_{0}(N)$ be the modular curve associated to $\Gamma_{0}(N)$.

For each divisor $d \mid N$ with $(d, N / d)=1$ (we write $d \| N$), consider the matrices of the form $\left(\begin{array}{cc}d x & y \\ N z & d w\end{array}\right)$ with $x, y, z, w \in \mathbb{Z}$ and determinant d. Then these matrices define a unique involution on $X_{0}(N)$ which is called the Atkin-Lehner involution and denoted by $W_{d}=W_{d}^{(N)}$. In particular, if $d=N$, then W_{N} is called the full Atkin-Lehner involution.

It is known that the group $\operatorname{Aut}_{\mathbb{Q}}\left(X_{0}(N)\right)$ of automorphisms of $X_{0}(N)$ over \mathbb{Q} contains the group $\mathcal{W}=\left\{W_{d}\right\}_{d \| N}$ of Atkin-Lehner involutions. Let \mathcal{W}^{\prime} be a subgroup of \mathcal{W}, and consider the quotient curve $X_{0}(N) / \mathcal{W}^{\prime}$, which is denoted by $X_{0}^{+d}(N)$ (resp. $\quad X_{0}^{*}(N)$) when $\mathcal{W}^{\prime}=\left\langle W_{d}\right\rangle$ (resp. $\left.\mathcal{W}^{\prime}=\mathcal{W}\right)$. For the case $\left\langle W_{N}\right\rangle$, this curve is denoted by $X_{0}^{+}(N)$.

It is a well known fact that there exists a basis of the spaces of cuspforms of weight 2 on $X_{0}(N)$ which consist of eigenforms for W_{d}. Such a basis gives bases for the spaces of cuspforms of weight 2 on the quotient spaces $X_{0}(N) / \mathcal{W}^{\prime}$ from which one can obtain canonical embeddings of that spaces. In fact, eigenforms on $X_{0}(N)$ for W_{d} with eigenvalue +1 for all $W_{d} \in \mathcal{W}^{\prime}$ are cuspforms $X_{0}(N) / \mathcal{W}^{\prime}$. One can easily

[^0]get linearly independent eigenforms from newforms in Stein's tables [3], but it is complicated to compute linearly independent eigenforms from oldforms. Many literatures use a basis for the spaces of cuspforms of weight 2 on $X_{0}(N)$ which consists of eigenforms for W_{d} without sufficient explanations how to find them.

In this paper, we will give full details of a method dealing with especially eigenforms form oldforms by an example.

2. Preliminary

The paper of Atkin and Lehner[1] gives some information about the behaviour of the newforms. We quote what we need from their main theorem.

ThEOREM 2.1. The vector space, of cuspforms of even weight 2 on $\Gamma_{0}(N)$, has a basis consisting of oldcalsses and newclasses. All forms in a class have the same eigenvalues with respect to the Hecke operators $T_{p}(p \nmid N)$. Each newclass consists of a single form f which is also an eigenform for the $W_{l}(l \mid N)$. We choose f to be normalized (i.e. $a_{1}=1$ in the q-expansion). Then f satisfies

$$
f\left|T_{p}=a_{p} f, f\right| W_{l}=\lambda_{l} f
$$

where, if $l \| N$ we have $a_{l}=-\lambda_{l}$, and if $l^{2} \mid N$ then $a_{l}=0$. Further, each oldclass is of the forms $\{g(d \tau) \mid g$ is a newform of some level M, and d runs through all divisors of $N / M\}$. The old classes may be given a different basis consisting of forms which are eigenforms for all the W_{l}.

Let $S_{2}(N)$ and $S_{2}^{\circ}(N)$ be the space of cuspforms of weight 2 on $\Gamma_{0}(N)$ and the space spanned by newforms of weight 2 on $\Gamma_{0}(N)$ respectively. For the behaviour of the oldforms, we need the following Theorem:

Theorem 2.2. Let N be a positive integer. Let N^{\prime} be a positive divisor of N and let d be a positive divisor of N / N^{\prime}. For a prime $p \mid N$, let $p^{\alpha}\left\|N, p^{\alpha-\beta}\right\| N^{\prime}, p^{\gamma} \| d$, so that $\gamma \leq \beta \leq \alpha$. Then the following holds:
(1) If $f \in S_{2}\left(N^{\prime}\right)$, then

$$
f(d \tau) \mid W_{p^{\alpha}}^{(N)}=p^{\beta-2 \gamma}\left(f \mid W_{p^{\alpha-\beta}}^{\left(N^{\prime}\right)}\right)\left(d^{\prime} \tau\right)
$$

where $d^{\prime}=p^{\beta-2 \gamma} d$.
(2) Let $f \in S_{2}^{\circ}\left(N^{\prime}\right)$. If $f \mid W_{p^{\alpha-\beta}}^{\left(N^{\prime}\right)}=\lambda_{p} f$ and $\beta \neq 2 \gamma($ resp. $\beta=2 \gamma)$, then

$$
f(d \tau) \pm p^{\beta-2 \gamma} \lambda_{p} f\left(d^{\prime} \tau\right)(\text { resp. } f(d \tau))
$$

is an eigenform for $W_{p^{\alpha}}^{(N)}$ with eigenvalue ± 1 (resp. λ_{p}).
Proof. See [1].
Note that if $\alpha=\beta$ then we consider $W_{p^{\alpha-\beta}}^{\left(N^{\prime}\right)}$ an identity, and hence λ_{p} is regarded as 1 .

3. Examples

In this section, we explain how to find a basis of the spaces of cuspforms of weight 2 on $X_{0}(N)$ which consist of eigenforms for W_{d} by an example. In the Modular Forms Database of Stein [3], there are two tables as follows:

- q-expansions of eigenforms on $\Gamma_{0}(N)$ of weight $k \leq 14$
- Eigenvalues of modular forms on $\Gamma_{0}(N)$ of weight ≤ 4 and high level, and of weight ≤ 100 and low level
For simplicity, we call the first table Table 1 and the second Table 2. Table 1 is a table of q-expansions of normalized newforms of even weight on $\Gamma_{0}(N)$, and Table 2 is a table of eigenvalues of newforms on $\Gamma_{0}(N)$ with the first few Hecke eigenvalues a_{p} of a basis of representatives for the Galois conjugacy classes of newforms.

Suppose $N=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ is the standard form of prime factorization of N. Then the third column of Table 5 in [2] lists the splitting of the space of all differential forms, old and new, given by the involutions $W_{i}=$ $W_{p^{i}}(i=1, \ldots, r)$. The dimensions of the eigenspaces corresponding to the r-tuple of eigenvalues $\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)$ of W_{1}, \ldots, W_{r} are listed in the order

$$
\begin{aligned}
& \epsilon_{1}=+1, \epsilon_{1}=-1, \text { if } r=1 \\
& \left(\epsilon_{1}, \epsilon_{2}\right)=(+1,+1),(+1,-1),(-1,+1),(-1,-1), \text { if } r=2
\end{aligned}
$$

Now consider $N=108=2^{2} \cdot 3^{3}$. The genus of $X_{0}(108)$ is equal to 10 and the dimensions of the eigenspaces corresponding to $(+1,+1)$, $(+1,-1),(-1,+1)$ and $(-1,-1)$ of W_{4} and W_{27} are $1,3,3$ and 3 respectively. Now we compute a basis of the space of cuspforms of weight 2 on $X_{0}(108)$ which consist of eigenforms for W_{4} and W_{27}. Table 1 shows that $S_{2}^{\circ}(108)$ is an 1 dimensional eigenspace corresponding to $(-1,+1)$ of W_{4} and W_{27}, which gives one eigenform as follows:

$$
f_{1}=q+5 q^{7}-7 q^{13}-q^{19}-5 q^{25}-4 q^{31}+\cdots .
$$

Thus all the other linearly independent eigenforms should be obtained from oldforms. From Table 1 and Table 2 , among $\Gamma_{0}\left(N^{\prime}\right)$ with $N^{\prime} \mid 108$ we have linearly independent four newforms as follows: Two newforms g_{1} and g_{2} on $\Gamma_{0}(54)$ are eigenforms corresponding to $(+1,-1)$ and $(-1,+1)$ respectively of $W_{2}^{(54)}$ and $W_{27}^{(54)}$, one newform g_{3} on $\Gamma_{0}(27)$ is an eigenform corresponding to -1 of $W_{27}^{(27)}$, and one newform g_{4} on $\Gamma_{0}(36)$ is an eigenform corresponding to $(-1,+1)$ of $W_{4}^{(36)}$ and $W_{9}^{(36)}$. Their $q-$ expansions are as follows:

$$
\begin{aligned}
& g_{1}=q-q^{2}+q^{4}+3 q^{5}-q^{7}-q^{8}-3 q^{10}+\cdots \\
& g_{2}=q+q^{2}+q^{4}-3 q^{5}-q^{7}+q^{8}-3 q^{10}+\cdots \\
& g_{3}=q-2 q^{4}-q^{7}+5 q^{13}+4 q^{16}-7 q^{19}+\cdots \\
& g_{4}=q-4 q^{7}+2 q^{13}+8 q^{19}-5 q^{25}-4 q^{31}+\cdots
\end{aligned}
$$

Firstly we will find two more linearly independent eigenforms corresponding to $(-1,+1)$ apart from f_{1} by using Theorem 2.2. Consider g_{2} and take $d=2$, then $\alpha=2, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{2}=g_{2}(2 \tau)+\frac{g_{2}(\tau)}{2}=\frac{1}{2} q+\frac{3}{2} q^{2}+\frac{3}{2} q^{4}-\frac{3}{2} q^{5}-\frac{1}{2} q^{7}+\frac{3}{2} q^{8}+\cdots
$$

is an eigenform corresponding to $(-1,+1)$. Consider g_{4} and take $d=3$, then $\alpha=3, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{3}=g_{4}(3 \tau)+\frac{g_{4}(\tau)}{3}=\frac{1}{3} q+q^{3}-\frac{4}{3} q^{7}+\frac{2}{3} q^{13}+\frac{8}{3} q^{19}-4 q^{21}+\cdots
$$

is an eigenform corresponding to $(-1,+1)$.
Secondly we will find three linearly independent eigenform corresponding to $(+1,-1)$. The first one can be obtained from g_{1}. We take $d=2$, then $\alpha=2, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{4}=g_{1}(2 \tau)+\frac{g_{1}(\tau)}{2}=\frac{1}{2} q+\frac{1}{2} q^{2}-\frac{1}{2} q^{4}+\frac{3}{2} q^{5}-\frac{1}{2} q^{7}+\frac{1}{2} q^{8}+\cdots
$$

is an eigenform corresponding to $(+1,-1)$. The second and third one can be obtained from g_{3}. Consider the cases $d=2$ and $d=4$. If $d=2$, then $\alpha=\beta=2, \gamma=1$, and hence

$$
f_{5}=g_{3}(2 \tau)=q^{2}-2 q^{8}-q^{14}+5 q^{26}+4 q^{32}-7 q^{38}+\cdots
$$

is an eigenform corresponding to $(+1,-1)$. If $d=4$, then $\alpha=\beta=$ $2, \gamma=2$, and hence

$$
f_{6}=g_{3}(4 \tau)+\frac{g_{3}(\tau)}{4}=\frac{1}{4} q+\frac{1}{2} q^{4}-\frac{1}{4} q^{7}+\frac{5}{4} q^{13}-2 q^{16}+\cdots
$$

is an eigenform corresponding to $(+1,-1)$.

Thirdly we will find three linearly independent eigenform corresponding to $(-1,-1)$. The first one can be obtained from g_{1}. We take $d=2$, then $\alpha=2, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{7}=g_{1}(2 \tau)-\frac{g_{1}(\tau)}{2}=-\frac{1}{2} q+\frac{3}{2} q^{2}-\frac{3}{2} q^{4}-\frac{3}{2} q^{5}+\frac{1}{2} q^{7}+\frac{3}{2} q^{8}+\cdots
$$

is an eigenform corresponding to $(-1,-1)$. The second one can be obtained from g_{3}. We take $d=4$, then $\alpha=\beta=2, \gamma=2$, and hence

$$
f_{8}=g_{3}(4 \tau)-\frac{g_{3}(\tau)}{4}=-\frac{1}{4} q+\frac{3}{2} q^{4}+\frac{1}{4} q^{7}-\frac{5}{4} q^{13}-2 q^{16}+\cdots
$$

is an eigenform corresponding to $(-1,-1)$. The third one can be obtained from g_{4}. We take $d=3$, then $\alpha=3, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{9}=g_{4}(3 \tau)-\frac{g_{4}(\tau)}{3}=-\frac{1}{3} q+q^{3}+\frac{4}{3} q^{7}-\frac{2}{3} q^{13}-\frac{8}{3} q^{19}-4 q^{21}+\cdots
$$

is an eigenform corresponding to $(-1,-1)$.
Lastly we will find an eigenform corresponding to $(+1,+1)$ which can be obtained from g_{2}. We take $d=2$, then $\alpha=2, \beta=\gamma=1$ and $d^{\prime}=1$. Thus

$$
f_{10}=g_{2}(2 \tau)-\frac{g_{2}(\tau)}{2}=-\frac{1}{2} q+\frac{1}{2} q^{2}+\frac{1}{2} q^{4}+\frac{3}{2} q^{5}+\frac{1}{2} q^{7}+\frac{1}{2} q^{8}+\cdots
$$

is an eigenform corresponding to $(+1,+1)$.
Finally therefore we obtain a basis $\left\{f_{1}, f_{2}, \ldots, f_{10}\right\}$ of the spaces of cuspforms of weight 2 on $X_{0}(108)$ which consist of eigenforms for W_{4} and W_{27}.

From this basis $\left\{f_{1}, f_{2}, \cdots, f_{10}\right\}$ we can get bases for the spaces of cuspforms of weight 2 on $X_{0}(N) / \mathcal{W}^{\prime}$ for various \mathcal{W}^{\prime}. If $\mathcal{W}^{\prime}=\left\langle W_{4}\right\rangle$, then the genus of $X_{0}^{+4}(108)$ is equal to 4 , which is the same as the number of eigenforms f_{i} corresponding to $(+1,+1)$ and $(+1,-1)$. Thus $\left\{f_{4}, f_{5}, f_{6}, f_{10}\right\}$ forms a basis for the space of cuspforms of weight 2 on $X_{0}^{+4}(108)$.

If $\mathcal{W}^{\prime}=\left\langle W_{27}\right\rangle$, then the genus of $X_{0}^{+27}(108)$ is equal to 4 , which is the same as the number of eigenforms f_{i} corresponding to $(+1,+1)$ and $(-1,+1)$. Thus $\left\{f_{1}, f_{2}, f_{3}, f_{10}\right\}$ forms a basis for the space of cuspforms of weight 2 on $X_{0}^{+27}(108)$.

If $\mathcal{W}^{\prime}=\left\langle W_{108}\right\rangle$, then the genus of $X_{0}^{+}(108)$ is equal to 4 , which is the same as the number of eigenforms f_{i} corresponding to $(+1,+1)$ and $(-1,-1)$. Thus $\left\{f_{7}, f_{8}, f_{9}, f_{10}\right\}$ forms a basis for the space of cuspforms of weight 2 on $X_{0}^{+}(108)$.

Finally if \mathcal{W}^{\prime} is equal to the full group \mathcal{W}, then the genus of $X_{0}^{*}(108)$ is equal to 1 , which is the same as the number of eigenforms f_{i} corresponding to $(+1,+1)$. Thus $\left\{f_{10}\right\}$ forms a basis for the space of cuspforms of weight 2 on $X_{0}^{*}(108)$.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
[2] B. J. Birch and W. Kuyk (Eds.), Modular functions of one variable, IV, Lecture Notes in Math. 476, Springer-Verlag, Berlin, 1975.
[3] http://modular.math.washington.edu/Tables/tables.html
*
Department of Mathematics Education Kongju National University
Kongju 314-701, Republic of Korea
E-mail: dyjeon@kongju.ac.kr

[^0]: Received April 13, 2012; Accepted June 20, 2012.
 2010 Mathematics Subject Classification: Primary 11G18, 11G30.
 Key words and phrases: cuspform, newform, oldform, eigenform.
 *This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2010-0023942).

